Appendix C: Monitoring Strategy

Key Focus Areas for 2021-2016

Introduction

The Monitoring Strategy will expand upon actions and activities described in Chapters 1–2 of the 2019 CCMP (Water Quality and Habitat Restoration). Monitoring is necessary to measure the effectiveness of the priority actions and to detect changes (deterioration or improvement) in TEP's focus area. Identifying status and trends in water quality parameters and habitat characteristics allows quantification of changing environmental conditions that inform adaptive management strategies affecting TEP's areas of focus.

Monitoring and assessment are necessary to comprehend current conditions in target areas, understand underlying ecological components and processes that sustain them, and determine the effects of land uses and conservation actions. An understanding of historic, current, and probable future conditions allows for prioritization of target communities for conservation and implementation of appropriate restorative actions to achieve desired goals. Monitoring and assessment both focus on biological attributes and the physical attributes that shape the environment (e.g., hydrology, geology).

Project-scale effectiveness monitoring measures environmental parameters to determine if habitat enhancements are meeting predetermined objectives. This evaluation process requires both pre- and post-project data collection (and study of control or reference sites, if possible) and allows for comparison of the habitat enhancement projects TEP and its partners undertake. TEP uses monitoring protocols that are consistent with other effectiveness monitoring efforts in the region.

An additional component of aquatic habitat condition is water quality. TEP has identified priority water quality issues that affect aquatic habitat and human health and has developed monitoring programs to track changes over the long-term. TEP has a robust Volunteer Water Quality Monitoring Program (VWQMP) that collects bacteria data to determine water quality status and trends over time. Additionally, TEP is working with Oregon DEQ to collect long-term temperature data and collaborate on an effective analysis strategy. TEP is also collaborating with partners to track the effects of ocean acidification in Tillamook Bay. Other water quality parameters are of interest, but as yet, challenges associated with data collection or lack of evaluation methods have limited TEP's ability to implement appropriate strategies.

This Monitoring Strategy (MS) describes actions and activities at the center of TEP's implementation efforts during the five-year period, 2021–2026. Additional CCMP Action Items may be implemented by partners or may be reconsidered for TEP implementation should unanticipated opportunities arise.

More details on each CCMP Action Item referenced in this MS are found in Chapters 1–2 (Water Quality and Habitat Restoration, respectively) of TEP's CCMP, which includes the need for monitoring and assessment (why), objectives/goals (what), project leads (who), timing (when), activities, anticipated costs, sources of

funding, timing, and performance measures (how). Estuary and watershed profiles for TEP's focus areas may be found in Chapter 4 of the CCMP.

This MS encompasses:

- Prioritized CCMP Action Items based on impact, relevancy, funding, and resources
- Key Monitoring Activities (Table C-1) with collaborative actions to create/develop
 - o Inventories of current TEP and partner monitoring efforts
 - o Current lists of indicators and data gaps
 - o Methods and frequencies of collecting and monitoring data
 - o Data sharing protocols (partners, public, decision makers, stakeholders)
 - Data analyses and applications
 - Pre- and post-project effectiveness monitoring
 - o CCMP administrative program performance tracking
- Goals and Measurable Objectives Outputs and Outcomes (Table C-2)
- Links between Climate Preparedness and this Monitoring Strategy (Table C-3)

Performance measures are reported via annual GPRA (NEPORT) reports, TEP annual reports/meetings, State of the Bays, social media updates, and EPA Performance Evaluations.

Prioritized CCMP Action Items for 2021-2026

To develop the prioritized actions and project types included in the MS, TEP enlisted the expertise of its staff, Board of Directors, and key partners during the revision of TEP's CCMP. The following priorities are based on this expertise and guided by the most current and relevant science-based literature available. The literature utilized to determine priorities include local and regionally focused action plans, limiting factors analysis, ESA recovery plans, and conservation strategies. Links to many of these references may be found in the Introduction to TEP's 2019 CCMP (page v).

While all of the actions incorporated in TEP's 2019 CCMP are critically important to TEP's overarching goal and remain a focus, TEP has chosen the following MS priorities to maximize the assessment and monitoring of ecological trends and the filling of critical data gaps during the next five years given the staff and funding resources available. TEP committed to evolving its priorities over time to align with the best available science and management practices.

Water Quality Assessment and Monitoring

- WAQ-01 Improve farm management practices to address water quality.
- WAQ-02 Improve rural residential and urban infrastructure to address water quality.
- WAQ-03 Enhance riparian and in-stream areas throughout the watersheds to improve water quality.
- WAQ-04 Restore channel features and hillslope management to improve sediment storage and routing to address water quality.
- WAQ-05 Identify status and trends and quantify changing environmental conditions in water quality to inform adaptive management strategies impacting TEP's priority areas.

Assessment and Prioritization

- HAB-01 Assess and prioritize estuarine habitats.
- HAB-03 Assess and prioritize instream habitats.
- HAB-04 Assess and prioritize riparian habitats.

Conservation and Restoration

- HAB-09 Maximize ecosystem connectivity to ensure a landscape array of ecosystem processes and ease of species movement.
- HAB-10 Provide genetically appropriate native vegetation and promote its use among habitat restoration and enhancement partners

Species Focus

- HAB-11 Assess, prioritize, and enhance key native species.
- HAB-12 Assess, prioritize and manage non-native species.
- HAB-13 Assess and implement best management practices for key habitat conservation

Key Monitoring Activities for 2021-2026

Table C-1 highlights TEP's key monitoring activities which are designed to satisfy the CCMP actions prioritized in the MS. Included in the table are the names of each project and unique identification codes useful in referencing them throughout this Appendix C. For each project, primary tasks are listed with an estimate of the timeframe during which they will be complete along with the CCMP actions that each project will address, the likely partners involved, and an estimate of the total costs to complete the key activities. Cost estimates align with those used in TEP's Anatomy of a CCMP Action (see the 2019 CCMP Introduction, page xviii).

Goals and Measurable Objectives for 2021-2026

Table C-2 lists the key measurable objectives (outputs) associated with each project and the long-term goals (outcomes) TEP hopes to achieve by carrying out the effort. Outputs consist of project deliverables such as acres restored or plants planted. Outcomes focus on changes in knowledge, in behaviors, and to ambient conditions, ecological functions, and biological populations (e.g. current status and trends in water quality, health and abundance of habitats and living resources). These definitions for outputs and outcomes are in accordance with the EPA's "<u>National Estuary Program - Program Evaluation Guidance</u>" logic model.

Links Between Climate Change Preparedness and Restoration Strategy

Table C-3 illustrates how TEP's priority projects listed in the MS achieve meaningful progress towards the actions called for in TEP's climate vulnerability assessment and adaptive management strategy. The first two columns list the specific climate change preparedness strategy/potential actions and their relative priority (low, medium, high) as indicated in TEP's 2019 CCMP. In the following columns, each project identified in the MS is listed by its respective identification code. An "x" in the box denotes that a particular MS project directly or indirectly contributes to the achievement of the actions identified in TEP's vulnerability assessment.

Table C-1 Key Monitoring Projects and Activities for 2021-2026

More information on each CCMP Action and on Partner acronyms may be found in Chapters 1–2 and Appendix A of TEP's 2019 CCMP, respectively. Cost: \$ = \$25,000; \$ = \$25,000 to \$99,999; \$ = \$100,000 to \$499,999; \$ \$ = \$500,000

Key Monitoring Activities	Y 1	Y 2	Υ 3	Y 4	Y 5	Partners	Cost	Current TEP Indicators	Current Partner Indicators	Data Gaps
Water Quality Monitoring for Bacteria (WQ1)					<u>.</u>	1	1			
Collect and analyze fresh and brackish water						Citizen	\$	E. coli and	E.coli concs	Additional
samples biweekly	х	х	х	х	х	Scientists,		entero-	and OWQI	sampling
Record data online to inform public through	х	х	х	х		DEQ	\$	coccus	score:	locations,
interactive map	^	^	^	^				concs:	sampled	continuing
Report status and trends of bacteria levels							\$	sampled	four times	MST analysis
		х		Х				twice a	a year	
								month		
Long-term Temperature Monitoring (WQ2)	1	1		1						
Deploy approximately 20 temperature loggers						DEQ,	\$	# of Days	Daily	Annual data
in priority watersheds	х	х	х	х	х	NNSL,		that 7-day	maximum	collection for
						USFS		maximum	high temp,	all locations,
Format and analyze temperature results	х	Х	Х	Х	х		\$	exceeds	quarterly	larger
Summarize apparent trends							\$	standards:	temp value	dataset for
		х		х				every other		trend
O_{resons} A sidification Manitoning (M(O2))	I							year		analysis
Ocean Acidification Monitoring (WQ3)					1		66	Develor	Develor	Monitarias
Deploy monitoring equipment in Tillamook Bay	Х	Х				EPA,	\$\$	Develop	Develop	Monitoring
Assess Project Results and Report			Х			OOMG,	\$\$	alkalinity &	alkalinity &	in other TEP
Develop and implement long-term monitoring						OSU,	\$\$	salinity relation-	salinity relationship	estuaries
				х	х	ODFW, OHSU,		ship	relationship	
						PSU		ship		
Dissolved Oxygen Monitoring (WQ4)	I	I				F30				
Estuary Characterization	1	v		v	I	DEQ	ćć	DO concs:	None	Strategy for
Develop and implement long-term DO		х		х		DLQ	\$\$ \$\$	15 minute	NOTE	Tillamook
monitoring							ĻĻ	interval		County
monitoring		x	х	х	x			during		county
		^	^	^	Â			critical		
								season		
Complete Coho Strategic Action Plan for Tillamoo	k and	1 Ne	stu	rca \	Nati	ersheds (COI	HO1)			
Assemble Technical Advisory Committee to			Ju			Wild	\$	1	OPRD,	Baseline
establish project scope, funding needs	х	Х				Salmon	Ŷ		NNSLWC,	assessment
Fundraise for Tillamook & Nestucca (grants)	х	х				Center,	\$		USFS,	of Coho
Assess and prioritize areas for habitat	~	~				NOAA,	\$\$\$		TCPWD,	habitat that
enhancement; inform restoration action						NNSLWC,	ŶŶŶ		TDM,	could benefit
COHO2		Х	х	Х		SSH, Many			ODFW	from
001102						Others				restoration
Develop and implement pre- (baseline) and post-	resto	ratio	on r	noni	itori	ng protocols	(MNTR1	L)	L	
Assemble Technical Team (NCLC, TNC, LNCT,						NNSLWC,	\$			TBD: site
LNWC, NNSLWC, SSH & SFC Members)	х					LNWC,				and project
Create inventory of TEP and partner (Local,						UNWC,	\$	1		dependent
NEP) restoration monitoring efforts	х	х				WEBS,				(e.g. wildlife
Standardize data collection, archiving, and						DEQ,	\$	1		species
sharing protocols	Х	х				USFWS,				presence/
Develop quality management plans	х	х	х	х		ODF,	\$	1		abundance,
Fundraising (grants) for monitoring equipment						ODFW,	\$	1		water
and supplies	х	х	х	х	х	USFS,				quality/
Conduct annual/seasonal baseline monitoring	1					TNC,	\$\$\$	1		quantity,
at prioritized sites (e.g. TRW, SS, SFC)	1	х	х	х	х	Tillamook				blue carbon,
Conduct planned post-restoration monitoring						County &	\$\$\$	1		plant
		Х	Х	Х	х	i '		1	1	survival

Table C-1 Key Monitoring Projects and Activities for 2021-2026

More information on each CCMP Action and on Partner acronyms may be found in Chapters 1–2 and Appendix A of TEP's 2019 CCMP, respectively. Cost: \$ = \$25,000; \$ = \$25,000 to \$99,999; \$ = \$100,000 to \$499,999; \$ \$ = \$500,000

Key Monitoring Activities Propagation success and distribution of native pla	Y 1	Y 2	Υ 3	Υ 4	Υ 5		Cost	Current TEP Indicators	Current Partner Indicators	Data Gaps
Access locations throughout Tillamook County to identify sources of target native seed species	X	x	x	x	x	OYA, NORP members, volunteers	\$	Seed counts, # of source plants, specimens and photos	Seed counts, # of source plants, specimens and photos	Additional seed source locations; improved survival rates
Monitor native seed germination success in TEP's Assess locations nursery	x	x	x	х	x		\$	% of sown seeds that germinate		
Monitor propagation success of native plants in TEP's nursery	x	x	x	х	x		\$	# of plants propagated		
Monitor out-plant survival at restoration sites	x	x	x	x	x		\$\$	% survival 1-3 years post- restoration		
Program Administration (GPRA1)					1	1		I	1	
Monitor annual restoration project for GPRA/NEPORTs	x	x	x	х	x	NNSLWC, LNWC, UNWC, WEBS, DEQ, USFWS, ODF, ODFW, USFS, Tillamook County & cities	\$	Restoration technique, GPS, acres	Restoration technique, GPS, acres	

Table C-2 Goals and Measurable Objectives for 2021-2026

Key monitoring activities from Table C-1 are repeated in Table C-2.

Key Restoration Activities	Outputs	Short-term	Intermediate	Outcomes					
	"Deliverables"	Outcomes	Outcomes	To restore and maintain the					
		"Knowledge"	"Behaviors"	ecological integrity of					
		(~1-2 years)	(~3-4 years)	estuaries of national					
				significance.					
				Fishable/Swimmable Waters					
Water Quality Monitoring for Bacteria (W		1	1	1					
Collect and analyze fresh and brackish	Publicly	Water quality	Implement	Document increase in					
water samples biweekly	accessible	conditions (status	riparian and	number of monitoring					
Record data online to inform public	data through	and trends) for all	wetland	locations that are meeting					
through interactive map	Interactive	monitoring	restoration and	water quality standard and					
Report status and trends of bacteria	online map	locations	septic &	increase in number of					
levels			infrastructure	locations that have					
			improvement	improving trends					
			projects						
Long-term Temperature Monitoring (WQ2		Determin -	Incolours	Desument in successive					
Deploy approximately 20 temperature	Collect,	Determine	Implement	Document increase in					
loggers in priority watersheds	process, and	number of days sites exceed the 7	riparian and wetland	number of monitoring					
Format and analyze temperature results	upload			locations that are meeting					
Summarize apparent trends	temperature data to DEQ	day Maximum	restoration	water quality standard and maintain and increase					
		temperature standard	projects						
	database	Standard		riparian vegetation to protect and provide cool					
	ualabase			water refugia					
Ocean Acidification Monitoring (WQ3)				water rerugia					
Deploy monitoring equipment in	Collect data at	Document	Develop a	Track changes in water					
Tillamook Bay	appropriate	seasonal and	monitoring	column characteristic over					
Assess Project Results and Report	frequency and	episodic changes	strategy based on	the long-term in Tillamook					
Develop and implement long-term	upload to	in acidity and	lessons learned	Bay and expand monitoring					
monitoring	DEQ AWQMS	establish an	that can be	to over estuaries when					
5	database	alkalinity and	deployed in other	appropriate : Assess					
		salinity	estuaries.	necessary adjustments for					
		relationship		shellfish rearing					
Dissolved Oxygen Monitoring (WQ4)									
Estuary Characterization	Collect data	Determine DO	Implement	Develop an areawide DO					
Develop Long-term DO Monitoring	at	conc and compare	estuary and	monitoring strategy to track					
Strategy	appropriate	to water quality	freshwater	changes over time					
	frequency	standard and	riparian and						
	and upload to	reference	wetland						
	DEQ AWQMS	conditions	restoration						
	database		projects						
Complete Coho Strategic Action Plan for T									
Assemble Technical Advisory Committee	Completed	Identification of	Results shall	Reconnection of salmonid					
to establish project scope, funding	strategic	optimal locations	inform restoration	habitat					
needs	action plan	for large wood,	action COHO2						
Fundraise for Tillamook & Nestucca	for Coho in	beaver dam							
(grants)	Tillamook and	analogs, and other							
Assess and prioritize areas for habitat	Nestucca	restoration efforts							
enhancement; inform restoration action	watersheds								
COHO2	 								
Develop and implement pre- (baseline) an			s (MNTR1) Standardized	Matrice of roctanation					
Assemble Technical Team (NCLC, TNC,	Region-wide	BMPs identified;		Metrics of restoration					
LNCT, LNWC, NNSLWC, SSH & SFC	comparable	partner	protocols; shared	success across all projects					
members)	data with	understanding of	results; baseline	and partners working in					

Table C-2 Goals and Measurable Objectives for 2021-2026

Key monitoring activities from Table C-1 are repeated in Table C-2.

Key Restoration Activities	Outputs "Deliverables"	Short-term Outcomes "Knowledge" (~1-2 years)	Intermediate Outcomes "Behaviors" (~3-4 years)	Outcomes To restore and maintain the ecological integrity of estuaries of national significance. Fishable/Swimmable Waters
Create inventory of TEP and partner (Local, NEP) restoration monitoring efforts (INV) Standardize data collection, archiving, and sharing protocols (Data-Proto) Develop quality management plans Fundraising (grants) for monitoring equipment and supplies Propagation success and distribution of native plants from TEP nursery (NPN2)	restoration and reference sites identified for future work; approved QMPs; annual and seasonal baseline and post- restoration monitoring results	shared protocols; better understanding of baseline habitat conditions; understanding of priority variables to meet long-term outcome goals; understanding factors impacting restoration success	monitoring adapted to suit long-term outcome goals; adaptive restoration management	Tillamook County and among NEPs; increased acreage/mileage of restored habitat; decreased follow- up/ maintenance at restoration sites
Propagation success and distribution of na				I
Assess locations throughout Tillamook County to identify sources of target native seed species Monitor native seed germination success in TEP's nursery Monitor propagation success of native plants in TEP's nursery Monitor out-plant survival at restoration sites	Seeds sources mapped; seeds germinated into plant stock; native plants propagated and available for restoration projects; long-term monitoring of outplant sites	Sufficient seed sources identified for optimal genetic diversity; factors impacting germination, propagation, and outplant survival identified; importance of native plants shared with community and youth work crews during education and volunteer events	Seed sourcing and nursery propagation techniques optimized; community appreciation of native plants ; increased participation in stewardship activities	Robust native plant stock available for restoration projects with high survival and genetic diversity
Program Administration (GPRA1)	. A	. A	Lucreard	
Monitor annual restoration project for GPRA/NEPORTs	Annual leverage reports	Awareness of partner restoration projects throughout Tillamook County	Increased collaborations	Larger, landscape-scale restoration efforts

Table C-3 Climate Change Preparedness and Monitoring Strategy Crosswalk for 2021-2026

* "Priority from VA" refers to the Vulnerability Assessment conducted by TEP and its partners in preparation for the 2019 CCMP (see Chapter 4, Table 5, pp. 105-110). The final two columns have been left blank intentionally to allow for the inclusion of additional projects in the future.

		Monitoring Strategy Activities for 2021-2026										
Priority from VA*	Climate Change Preparedness Strategy/Potential Actions	W Q 1	W Q 2	W Q 3	W Q 4	C 0 H 0 1	M O N T 1	N P N 2	G P R A 1			
	Limit nutrient inputs											
High	Water quality monitoring and assessment (for quicker response)	x		х	x	x	х					
	Stormwater management	Х		Х	Х							
	Agricultural management	1		1	1	1	1	1	1			
High	Animal exclusion fencing	Х		Х	Х							
Medium	Off channel watering Improve drainage function of lower tidal wetlands through restoration, thereby improving productivity of upland agricultural areas	X	x	X	x	X			x			
	Improvement to infrastructure											
High	Identify culverts and roads most at risk of failure from high flows (esp. those culverts with insufficient capacity)					x						
	Replace or remove culverts and roads most at risk					Х		Х	х			
	Improvements to stormwater infrastructure (including stormwater retention)	х	х	х	х	х			х			
Medium	Reduce miles of unmaintained forest roads by fully decommissioning (remove culverts, pull back unstable slopes, reduce landslide risk)		х			x		x	x			
	Identify and prioritize areas for restoration					1		1				
	Identify sites where gravel deposits and downed wood might enhance the fish habitat		х			x	х					
High	Identify areas and prioritize by estuarine and freshwater type. Freshwater wetlands expected to be more vulnerable under drought scenarios.		х		x	x	x					
	Protect existing habitat											
High	Protect existing healthy riparian vegetation, which provides shade	х	х	х	х	х	х	х	х			
	Restore wetlands and floodplains	1		1	1	r	1	r				
High	Restore floodplain connectivity for freshwater and tidally influenced wetlands and examine underlying influence on hydrology	x	х	х	x	x	x	х	x			
	Riparian restoration in stream related wetlands	х	Х		х	х	х	х	х			
Medium	Planting and restoration of wetlands with species that are better adapted to climate variability	x	x	х	x	x	x	x				
	Habitat improvement											
	Large woody debris (LWD) to collect gravels for more subsurface flow and assist catching landslide material		х			x	x		x			
High	Riparian plantings	х	Х	Х	х	х	х	х	х			
	Floodplain habitat restoration Reconnect springs, wetlands, floodplains that can serve as cold water refugia		x x		x x	x x	x x	x x	x x			
Medium	Increase diversity of habitat to create more salmonid life history options		х		x	x	x	x	x			

Table C-3 Climate Change Preparedness and Monitoring Strategy Crosswalk for 2021-2026

* "Priority from VA" refers to the Vulnerability Assessment conducted by TEP and its partners in preparation for the 2019 CCMP (see Chapter 4, Table 5, pp. 105-110). The final two columns have been left blank intentionally to allow for the inclusion of additional projects in the future.

		Monitoring Strategy Activities for 2021-2026									
		w	W	W	W	С	М	N	G		
		Q	Q	Q	Q	ō	0	P	P		
Priority	Climate Change Preparedness Strategy/Potential	1	2	3	4	н	Ň	N	R		
from VA*	Actions	-	-			0	Т	2	A		
						1	1	-	1		
	Increase off-channel habitat					x	x		x		
	Stream channel restoration to create more										
	channel complexity		х			х	х	х	х		
	Expand conservation and restoration activities to										
	ensure maintenance of specific types of wildlife					х	х	Х	Х		
	habitat										
	Large scale, holistic floodplain management to	х	х	х	х	х	х		х		
	maintain and enhance complexity and function										
	Forest management strategy to balance water		х				х				
	absorption										
Low	Setback dikes to increase channel width and	х	х	х	х	х	х		х		
	improve floodplain function										
!:	Increase natural upland water storage	1							1		1
Medium	Promote beaver habitat in the uplands		X			Х	Х		Х		
	Reduce impacts of new and existing development of	n estua	ries						r	1	1
	Replace/remove/remediate existing infrastructure										
High	and development vital to estuary conservation		Х		Х	Х	Х	х	х		
	and ecological functioning over long timeframe										
	Assess and manage for projected change		-		1		1				
	Using sea level rise study/report, assess culverts,		х		х	х	x				
High	dikes, other infrastructure, and areas at risk		^		^	^	^				
1.1.6.1	Protect/restore/conserve areas that will become		х		х	х	х	х	х		
	new habitat with sea level rise		~		~	~	~	~	~		
	Develop/use models to view stream and estuary										
	conditions 50-100 years out (for planning current		Х		х	х					
Medium	and near future actions)		-								
	Identify at-risk habitats, birds, and species					Х	Х				
	Re-map estuarine sediments and habitats					Х	Х				
Low	Revise management units to protect estuarine	х	х	х	х	х	х				
	fringe Manage streamflow										
Madium	Sustainable water storage and release	1								1	1
Medium	Increase strategy for invasive management		Х		Х						
Medium	Aggressive PRISM approach					x	v	x	x		
MEdium	Improve riparian planting survival	L			I		Х	~	^		
	Plant diverse species in riparian zones	~	1	1	1	~		~	V	1	
High	Replant riparian areas as needed	X X	х	v	x	X X	Х	X X	X X		
i iigi i	Monitor riparian planting survival	X	~	Х	X	x	х	X	^		
	Increase forest diversity and resilience	L	L	l	L	~	~	L	L	L	
	Replant with multiple tree species to preserve and										
High	enhance diversity		х	х	х	х	х	х	х		
	Assess establishment and survival of tree species										
Medium	post-disturbance and over longer time periods to	х	х	х	x	х	х	х			
meann	determine the most suitable species for planting	^	~	~	^	^	^	^			
	Reduce greenhouse gas emissions										1
Medium	TBD – reduce greenhouse gas emissions			х	x	х	x	х	x		
		1									

Table C-3 Climate Change Preparedness and Monitoring Strategy Crosswalk for 2021-2026

* "Priority from VA" refers to the Vulnerability Assessment conducted by TEP and its partners in preparation for the 2019 CCMP (see Chapter 4, Table 5, pp. 105-110). The final two columns have been left blank intentionally to allow for the inclusion of additional projects in the future.

		Monitoring Strategy Activities for 2021-2026								
		W	W	W	W	С	М	N	G	
		Q	Q	Q	Q	0	0	Р	Р	
Priority	Climate Change Preparedness Strategy/Potential	1	2	3	4	н	Ν	Ν	R	
from VA*	Actions					0	Т	2	Α	
						1	1		1	
	Develop appropriate vegetation management action	is if cha	anges c	letecte	d					
Medium	Change in the type of vegetation used in riparian	x	x	x	x	х	х	x		
Wiediam	restoration activities				^	~	~	^		
	Continue with current management strategies and monitor for changes									
High	Continue water quality monitoring	Х	Х	х	Х		Х			
	Monitor for changes in vegetation		Х			Х	Х	Х		
Medium	Maintain Riparian Management Areas (RMAs)	х	х	х	х	х	х			
	strategies	^	~	^	^	~	~			
	Improve understanding of risks related to wildfire, fo	rest m	anagen	nent an	d clima	te cha	nge	-		
	Assess fuels across landscape (wetter coast to drier		х				х			
	inland) and manage appropriately		^				^			
	Review riparian practices for areas affected by		х				х			
Medium	wildfire		^				^			
	Based on the results of the assessment, manage									
	fuels for reduced wildfire severity while		Х				Х			
	maintaining ecological values and function									
Low	Review salvage logging practices for better		х				х			
	understanding of how the risk affects the region		~				~			
	Reduce visitor impacts to bays and rivers	1						1	1	
	Education and outreach to share water quality info	х					х			
	with stakeholders and users						~			
High	Education and outreach on visitor impacts	Х					Х			
	Education and outreach to keep users away from					х	х			
	stressed areas					~	~			

